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Ah&met--A relation between bond lengths and Penney-Dirac bond orders has been derived. 

INTRODUCTION 

ACCORDING to Dirac,’ the total energy of a molecule may be written as: 

E = ponls 
-t 2 Qrj - L: 6(1 i- 4%. st> JIJ (11 

where G is the quantum mechanical mean of the scalar product of electron spin 
vectors s, and 9. The QIJ and JIJ are the familar Coulomb and exchange integrals 
from the Valence Bond theory. So if the double bond in ethylene is treated as a sum 

of a rr and a o bond we find G, = -# for the opposed z-electron spins on both 
carbon atoms. A no r-bond situation is represented then by random spins for which 

sj . S$ = 0. 
Penney2 defined the mobile bond order p~j for these cases as + 1 and 0 respectively. 

Moreover he introduced fractional bond orders by linear interpolation, thus using: 

piJ = --$ ai. sj 

The expression for the v-bond energy may be written now as: 

(21 

E” = 2: Q~J -+ s B(~Pu - 11 JU (3) 
L1 

which enables us to take into account differences in C-C bond lengths r if Q(r), 
J(r) and p(r) are known, 

The dependence of exchange integrals J and Coulomb integrals Q on bond 
lengths r has been considered recently by Coulsan and Dixon8 in a discussion of 
bond alternation in cyclic polyenes. Following their arguments the total binding 
energy for ethyiene and benzene at equal bond distances may be written as: 

and : 
E%$, (r1 = Q(r) + J(r) + E4(r) (4) 

E&zene (r) = 6[Q(r) + 0.434 J(r) + E”(r)] (5) 

* Part III: Rec. Trm. Chim. in press. Part II: Termhe&on 19,2163 (1963). 

‘ P. A. M. Dirac, Prirtciples af Quantum IUecbonicJ Chap. 12. Oxford University Press (lpb?). 
* W. G. Penney, Proe. Roy. Sm. H8,306 (1937). 
* C. A. Coulson and W. T, Dixon, Tefr~~r~n 17,215 (1962). 
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where E’-‘(r) represents the u energy of a bond of length r. Combining (4) and (5) 
gives : 

For the dependence of Etota’ on r, Morse functions were chosen: 

E(r) = ~[e-~~(t-I@) _ 2e-a(r-r,)] (7) 

After insertion of appropriate values for the parameters a relation between J and r is 
obtained that can be approximated in the range l-34 < r < 1.51 A by: 

J(r) = -41.199 -+ 121*2(r - l-42) - 114*2(r - 1.42)2 (8) 

Along similar lines an expression for E”(r) + Q(r) can be derived from (4) and (5) 
by elimination of J. The relevant analytical expression now becomes: 

E”(r) + Q(r) = ~ 105905 - 39_6(r - l-42) + 526(r - 1*42)2 + 

-lNO(r - 1*34)(r - 1*42)(r - 1.51) (9) 

The use of the expressions (8) and (9) obviously lies in application to other mole- 
cules but in doing so one should realize the basic assumptions in their derivation. 

Clarkson et al.* outlined a procedure to obtain fractional bond orders from the 
molecular wave function. In the VB approximation, the molecular wave function 
Y is obtained as a linear combination of the individual wave functions for the 
“resonating” structures qr: 

y = Cl& + c,v, + * . . crp + . . . IW 

The coefficients cr and the 7r-electronic energy of the molecule are required to satisfy 
the secular equations. 

etc. 
c,(H,, - E’S,,) + %(H,, - E”S& 2 . . . cr(HIr - E”&r) = 0 (11) 

where Hrs = j prHqs d7 and S,, = S vrp,, d7 if we take the wave functions to be 
real. Hence the coefficients in (10) have to be chosen so as to minimize the molecular 
electronic energy E and this may be expressed as: 

E” = j\THy d7 = ; ‘rCsS 4;rH% dT 2 CrCsHrB 

sY2dr z CrCa _f ~r~rs d7 = ; c&J Srs 
(12) 

ra Is 

The integrals H rs and S,, can be written down easily with the aid of superposition 
diagrams.6 In the simplest and most common applications of this method to e.g. 
a-electron systems of planar conjugated hydrocarbons the exchange integrals JIJ 
and Coulomb integrals QIJ are assumed to be constants. If one desires however to 
distinguish between individual carbon-carbon bonds then the matrix elements Hr, 
must be written: 

I-h = 2 QIJ%~ •k 3 awJJ1j (13) 
ij 

4 D. Qarkson, C. A. Coulson and T. H. Goodwin, Tetrahedron 19,2153 (1963). 
t L. Pauling, L. 0. Brockway and J. Y. Beach,J. Amer. Clrem. Sm. S-7,2705 (1935). 
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In (13) the summations Cn must be taken over all bonds, the ars,n appear as multiples 
OF Sra, SO that 

2 C&sars.uJu 
E” = $ Qu +rs'~CrCsSrs (14) 

In 

A comparison of (3) and (14) shows that: 

which reduces to 

pjj = 411 + 2 2 wsars,ijl (16) 
h?? 

when the wave function Y is normalized. 
Clarkson et aL4 suggested that the bond orders obtained through (IS) for a chosen 

set of bond lengths could be used in an iterative process leading ultimately to self- 
consistent lengths and bond orders. It may be emphasized that it is possible to 

calculate fractional bond orders for any molecular conformation but in fact a bond 
order only characterizes the length of a bond if obtained for the equilibrium conforma- 
tion. Bond orders pertaining to this situation will be indicated here by p*. 

A BOND ORDER-BOND LENGTH CURVE 

It will be shown now that for given equilibrium bond length the Penney-Dirac 
bond orders can be calculated directly from (8) and (9). Combination of the c- and 
r-electron energy enables us to write the total molecular electron energy E$lal for 
any set of bond lengths rn as: 

(17) 

The equilibrium condition requires 

for every bond; hence if we consider the variation of Etota’ in the equilibrium 
situation with one particular bond say rkl and keep all other rn* fixed it appears 
that 

’ = (z)rlJo = (g)rU’ + (z)rrj* + &(3pkT - 1) ($!Y)r,,O 

Let us analyse first the last term in this expression i.e. a summation representing 
changes in the bond orders caused by variations of r. The bond orders are merely 
combinations of coefficients indicating the weight of the valency bond structures 
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in the wave equation (IO). Forfixed distances these coefficients are obtained from the 
secular equations i.e. by minimizing the energy with respect to all coefficients ce, 
so that: 

But for a chosen set of lengths rij-not necessarily being the equilibrium set-the 
Qrl and the Jij are constants with respect to the coefficients, thus reducing (19) to: 

0 = 2 Jlh) !!?i 
II 8CB 

mowing now for small variations of one of the rij say rkl, we find 

0 = 1 Jll(r) ‘pljlatkl 
1J &/ark1 

(20) 

(21) 

from which 

0 = 2 Ji,(r) !& 
11 ark1 

(22) 

This expression obviously applies to the equilibrium situation as well. Rearrangement 
of (18) leads to: 

d(Ekla + Qkl) 

3(3pkl* - 1) = - 
drkl 

dJk, 

drkl 

With the aid of expression (23) and the relations (8) and (9) bond orders corresponding 
to given (equilibrium) lengths fl can be calculated. The resulting bond length-bond 
order curve is presented in Fig. 1. The p values obtained in this manner must be 
identical with those found ultimately with the self-consistent procedure outlined by 
Clarkson et al.‘. Both methods are based on the same r-dependency of J and (E” + Q). 

The determination of molecular conformations of minimum energy through the 
iterative procedure can be guided now because one is able to adapt new trial lengths 
to the bond orders obtained from a former cycle. 

It should be remarked that the Penney-Dirac order length curve comes very near 
to corresponding relations et’ obtained in the molecular orbital theory viz. r = 1.51 - 
O-16 p or r = 1.53 - 0.18 p. A simple analytical approximation to the valence 
bond curve is 

r = + I.53 - O-25 p + O-06 p2 (24) 

It appears that a bond length of about l-53 A corresponds to a bond order zero. 
At first sight one expects here I.51 A because this is the length chosen for a pure 
single cr bond formed from two sp2 hybridized carbon atoms. However, a bond 

l H. C. Longuet-Higgins and L. Salem, Proc. Roy. Sot. AZ51, 172 (1959). 
’ D. A. Morton Blake, Ph.D. Thesis, University of Glasgow, 1964. 
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Fm, I. Full culye [a) Penney-Dirac bond orders versus bond lengths; dotted lines show 
empirical relations used in molecular orbital theory (b): r = l-51 - 0-16~. {c): 

r = 143-O*lSp. 

order zero must be assigned to the C-C bond in a hypothetical “moIeeule’V GH, 
where the two +electron spins are oriented at random. So it is plausible that a com- 
bination of (8), (9) and (23) leads to r = I*523 A at zero bond order. In the region 
where very small or negative Penney-Dirac orders occur the relation can not be very 
accurate because rather large extrapolations from the basic data (properties of 
ethylene and benzene) are involved then. The applicability of the curve can be 
tested if more calculated bond lengths and bond orders become available for molecules 
such as naphthalene for which accurate structure determinations are available. 
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